wEPA

United States
Environmental Protection
Agency

National Risk Management
Research Laboratory
Ada, OK 74820

Research and Development

EPA/600/SR-97/007 February 1997

Project Summary

Ground-Water Model Testing:
Systematic Evaluation and
Testing of Code Functionality and

Performance

Paul K. M. van der Heijde and D. A. Kanzer

Effective use of ground-water
simulation codes as management
decisiontools requires the establishment
of their functionality, performance
characteristics, and applicability to the
problems at hand. This is accomplished
through systematic code-testing protocol
and code selection strategy. The protocol
contains two main elements: functionality
analysis and performance evaluation.
Functionality analysis is the description
and measurement of the capabilities of a
simulation code; performance evaluation
concerns the appraisal of a code’s
operational characteristics (e.g.,
computational accuracy and efficiency,
sensitivity for problem design and
parameter selection, and reproducibility).

Testing of ground-water simulation
codes may take the form of (1)
benchmarking with known, indepen-
dently derived analytical solutions; (2)
intracomparison using different code
functions inciting the same system re-
sponses; (3) intercomparison with com-
parable simulation codes; or (4) com-
parison with field or laboratory experi-
ments. The results of the various tests
are analyzed using standardized statisti-
cal and graphical techniques to identify
performance strengths and weaknesses
of code and testing procedures. The pro-
tocol is demonstrated and evaluated us-
ing a three-dimensional finite difference
flow and solute transport simulation
code, FTWORK.

This Project Summary was developed
by EPA’s National Risk Management

Research Laboratory’s Subsurface
Protection and Remediation Division,
Ada, OK, to announce key findings of the
research projectthat s fully documented

in a separate report of the same title (see
Project Report ordering information at
back).

Introduction

Ground-water modeling has become an
important methodology in support of the
planning and decision-making processes
involved in ground-water resources
development, ground-water protection, and
aquifer restoration. In ground-water
modeling, it is crucial that the code’s
credibility is established and its suitability is
determined. This is conducted through
systematic evaluation of code’s correctness,
performance, sensitivity to input uncertainty,
and applicability to typical field problems.
Such a systematic approach is referred to
as “code-testing and evaluation protocol.”
Without subjecting a ground-water simulation
code to such systematic testing and
evaluation, results obtained with the code
may suffer from low levels of confidence.
Acceptance of a modeling code depends
not only on a series of successful tests, but
also a history of successful applications to a
variety of site conditions and management
problems.

Reviewing the existing literature indicates
that previous code-testing studies appear to
be (1) lacking in systematically addressing
code features and providing insight in the
completeness and effectiveness of the

performed testing, and (2) inconsistent and
incomplete for documentation describing the
code’s functions and features. A new code-
testing protocol known as functionality
analysis, performance evaluation and
applicability assessment protocol (van der
Heijde et al., 1993) is presented to address
these deficiencies.

The report begins with a review of existing
code-testing literature. The formulation of a
comprehensive code-testing protocol is
developed. Testing strategies are presented
using various graphical and statistical tools.
The protocol is then demonstrated using a
numerical code, FTWORK (Faust et al.,
1990), which is designed to simulate three-
dimensional flow and solute transportin the
saturated zone of the subsurface.

Code Testing

A systematic approach to code testing
combines elements of error-detection,
evaluation of the operational characteristics
ofthe code, and assessment of its suitability
to solve certain types of management
problems, with well-designed test problems,
relevant test data sets, and informative
performance measures.

The code-testing protocol described in
the report is applied in a step-wise fashion
(Table 1). First, the code is analyzed with
respect to its simulation functions and
operational characteristics. Potential code
performance issues are identified, based on
analysis of simulated processes,
mathematical solution methods, computer
limitations and execution environment. This
is followed by the formulation of a test
strategy, consisting of design or selection of

relevant test problems. The set of test
problems is chosen such that all code
functions and features of concern are
addressed. Results of the testing are
documented intables and matrices providing
an overview of the completeness of the
testing invarious types ofinformative graphs,
and with a set of statistical measures. The
actual testing may take the form of

1) benchmarking using known,
independent derived analytical
solutions,

2) intracomparison using different code
functions inciting the same system
responses;

3) intercomparison with comparable
simulation codes; or

4) comparison with field or laboratory
experiments.

Itis important that each test be documented
with respect to test objectives, model setup
for both the tested code and the benchmark,
if applicable (structure, discretization,
parameters), and results for each test (for
both the tested code and the benchmark).
Functionality of a ground-water modeling
code is defined as the set of functions and
features which the code offers the user in
terms of model framework geometry,
simulated processes, boundary conditions,
and analytical and operational capacities.
The code’s functionality must be defined in
sufficient detail for potential users to assess
the code’s utility, as well as to enable the
code developerto design a meaningful code-
testing strategy. Functionality analysis
involves the identification and description of
the code’s functions, and the subsequent
evaluation of each code function or group of

Table 1. Procedures of code-testing and evaluation protocol.

Code Testing and Evaluation Protocol

functions for conceptual correctness and
error-free operation. The information
generated by functionality analysis is
organized into asummary structure, or matrix
that brings together the description of code
functionality, code-evaluation status, and
appropriate test problems. This functionality
matrixis formulated by combining acomplete
description of the code functions and features
with the objectives of the test cases. The
functionality matrix illustrates the extent of
the functionality analysis.

Performance evaluation is aimed at
characterizing the operational characteristics
of the code in terms of:

1) computational accuracy (e.g., in
comparison with a benchmark);

2) reliability (e.g., reproducibility of results,
convergence and stability of solution
algorithms, and absence of terminal
failures);

3) sensitivity for grid orientation and
resolution, time discretization, and
model parameters;

4) efficiency of coded algorithms (in terms
of numerical accuracy versus code
execution time, and memory and mass
storage requirements); and

5) resources requiredfor model setup and
analysis (e.g., input preparation time,
effort needed for graphical
representation of simulation output).

Results of the performance evaluation are
reported both quantitatively and qualitatively
in checklists and in tabular form. Reporting
on performance evaluation should provide
potential users information on the
performance as a function of problem
complexity and setup, selection of simulation

Step 1
implementation;

Step 2
software environment;

Step 3

problems and determination of appropriate evaluation measures;

Step 4

Step 5

Step 6
Step 7

Step 8

identify performance strengths and weakness of code and testing procedure;

communicate results (e.g., prepare executive summary, overview report, etc.).

analyze the code documentation with respect to simulation functions, operational features, mathematical framework, and software

identify code performance issues based on understanding of simulated processes, mathematical methods, computer limitations, and

develop testing strategy that addresses relevant code functionality and performance issues including selection and/or design of test

execute test problems and analyze results using standard graphic and statistical evaluation techniques;

collect code performance issues and code test problems in overview tables and display matrices reflecting correctness, accuracy,
efficiency, and field applicability;

document each test setup and results in report form and as electronic files (text, data, results, graphics); and

control parameters, and spatial and temporal
discretization. The functionality matrix and
performance tables, together with the
supporting test results and comments,
should provide the information needed to
select a code for a site-specific application
and to evaluate the appropriateness of a
code used at a particular site.

Testing Strategy

Comprehensive testing of a code’s
functionality and performance is
accomplished through a variety of test
methods. Determining the importance of the
tested functions and the ratio of tested versus
non-tested functions provides an indication
ofthe completeness of the testing. Based on
the analysis of functionality and performance

issues, acode-testing strategy is developed.
Such a code-testing strategy should consist
of:

1) formulation of test objectives (as related
to code functionality and performance
issues), and of test priorities (Table 2);

2) selection and/or design of test problems
and determination of type and extent of
testing for selected code functions;

3) determination of level of effort to be
spent on sensitivity analysis for each
test problem;

4) selection of the qualitative and
guantitative measures to be used in the
evaluation of the code’s performance;
and

5) determination of the level of detail to be
includedinthe testreportand the format
of reporting.

The test procedure includes three levels of
testing (van der Heijde and EInawawy, 1992).
AtLevell, acode is tested for correctness of
coded algorithms, code logic and
programming errors by: (1) conducting step-
by-step numerical walk-throughs of the
complete code or through selected parts of
the code; (2) performing simple, conceptual
or intuitive tests aimed at specific code
functions; and (3) comparing with
independent, accurate benchmarks (e.g.,
analytical solutions). If the benchmark
computations themselves have been made
using a computer code, this computer code
should be, in turn, subjected to rigorous
testing by comparing computed results with
independently derived and published data.

AtLevelll,acodeistestedto: (1) evaluate
functions not addressed at Level |; and (2)

Table 2. Major test issues for three-dimensional finite-difference saturated ground-water flow and solute transport codes.

General Features

* mass balances (regular versus irregular grid)
 variable grid (consistency in parameter and stress allocation)

Hydrogeologic Zoning, Parameterization, and Flow Characteristics

 aquifer pinchout, aquitard pinchout
 variable thickness layers

 storativity conversion in space and time (confined-unconfined)

e anisotropy
e unconfined conditions
» dewatering

» sharp contrast in hydraulic conductivity

Boundary Conditions for Flow
 default no-flow assumption
e areal recharge in top active cells

* induced infiltration from streams (leaky boundary) with potential for dewatering below the base of the semi-pervious boundary

 drain boundary
e prescribed fluid flux

 irregular geometry and internal no-flow regions

Transport and Fate Processes

* hydrodynamic dispersion (longitudinal and transverse)

» advection-dominated transport

« retardation (linear and Freundlich)
e decay (zero and first-order)

» spatial variability of dispersivity

« effect of presence or absence cross-term for dispersivity

Boundary Conditions for Solute Transport
e default zero solute-flux assumption
e prescribed solute flux

e prescribed concentration on stream boundaries
e irregular geometry and internal zero-transport zones
e concentration-dependent solute flux into streams

Sources and Sinks

 effects of time-varying discharging and recharging wells on flow

e multi-aquifer screened wells

« solute injection well with prescribed concentration (constant and time-varying flow rate)
 solute extraction well with ambient concentration

evaluate potentially problematic
combinations of functions. Atthis level, code-
testing is performed by intracomparison (i.e.,
comparison between runs with the same
code using different functions to represent
a particular feature), and intercomparison
(i.e., comparison between different codes
simulating the same problem). Typically,
synthetic data sets are used representing
hypothetical, often simplified ground-water
systems.

At Level lll, a code (and its underlying
theoretical framework) is tested to determine
how well a model’s theoretical foundation
and computer implementation describes
actual system behavior, and to demonstrate
a code’s applicability to representative field
problems. At this level, testing is performed
by simulating afield or laboratory experiment
and comparing the calculated and
independently observed cause-and-effect
responses. Because measured values of
modelinput, system parameters and system
responses are samples of the real system,
they inherently incorporate measurement
errors, are subject to uncertainty, and may
suffer from interpretive bias. Therefore, this
type of testing always retains an element of
incompleteness and subjectivity.

The test strategy requires that Level |
testing is conducted (often during code
development), and, if successfully
completed, is followed by Level Il testing.
The code may gain further credibility and
user confidence by subjecting it to Level Il
testing (i.e., field or laboratory testing).
Ideally, code testing should be performed
for the full range of parameters and stresses
the code is designed to simulate, in practice
this is often not feasible due to budget and
time constraints. Therefore, prospective
code users need to assess whether the
documented tests adequately address the
conditions expected in the target
application(s). If previous testing has not
been sufficient in this respect, additional
testing may be necessary.

Evaluation Measures

Evaluation of code-testing results should
be based on: (1) visual inspection of the
graphical representation of variables
computed with the numerical model and its
benchmark; and (2) quantitative measures
of the goodness-of-fit. Such quantitative
measures or evaluation or performance
criteria, characterize the differences between
the results derived with the simulation code
and the benchmark, or between the results
obtained with two comparable simulation
codes.

Graphical measures are especially
significant to obtain a first, qualitative
impression of test results, and to evaluate

test results that do not lend themselves to
statistical analysis. For example, graphical
representation of solution convergence
characteristics may indicate numerical
oscillations and instabilities in the iteration
process. Practical considerations may
prevent the use of all data-pairs in the
generation of graphical measures. Thus, a
subset of data-pairs may be selected for use
with graphical measures. There are five
types of graphical evaluation techniques
particularly suited: (1) X-Y plots or line
graphs of spatial or temporal behavior of
variables; (2) one-dimensional column plots
or histograms (for test deviations); (3)
combined plots of line graphs and column
plots of deviations; (4) contour and surface
plots; and (5) three-dimensional column plots
or histograms. The conclusions from visual
inspection of graphic representations of
testing results may be described qualitatively
(and subjectively) by such attributes as
“poor,” “reasonable,” “good,” and “very good.”

There are three general procedures,
coupled with standard linear regression
statistics and estimation of error statistics,
to provide quantitative goodness-of-fit
measures (Donigian and Rao, 1986): (1)
paired-data performance -- the comparison
of simulated and observed data in time and
space; (2) time and space integrated, paired-
data performance -- the comparison of
spatially and temporally integrated or
averaged simulated and observed data; and
(3) frequency domain performance -- the
comparison of simulated and observed
frequency distributions. The organization
and evaluation of code intercomparison
results can be cumbersome due to the
potentially large number of data-pairs
involved if every computational node is
included in the analysis. This can be
mitigated by analyzing smaller,
representative sub-samples of the full set of
model domain data-pairs. The repre-
sentativeness of the selected data-pairs is
often a subjective judgment. For example,
in simulating one-dimensional, uniform flow,
the data pairs should be located at least on
two lines parallel to the flow direction, one in
the center of the model domain and one at
the edge.

Useful quantitative evaluation measures
for code-testinginclude: (1) Mean Error(ME),
defined as the mean difference (i.e.,
deviation) between the model calculated
values versus the benchmark values; (2)
Mean Absolute Error (MAE), defined as the
average of the absolute values of the
deviations; (3) Positive Mean Error (PME)
and Negative Mean Error(NME), defined as
the ME for the positive deviations and
negative deviations, respectively; (4) Mean
Error Ratio (MER), a composite measure
indicating systematic overprediction/

underprediction by the code; (5) Maximum
Positive Error(MPE) and Maximum Negative
Error (MNE), defined as the maximum
positive and negative deviations,
respectively, indicating potential
inconsistencies or sensitive model behavior;
and (6) Root Mean Squared Error (RMSE),
defined as the square root of the average of
the squared differences between the model
calculated values and its benchmark
equivalents.

Various computed variables may be the
focus of graphic or statistical comparison,
including hydraulic heads (in space and
time), head gradients, global water balance,
internal and boundary fluxes, velocities
(direction and magnitude), flow path lines,
capture zones, travel times, and location of
free surfaces and seepage surfaces,
concentrations, mass fluxes, and
breakthrough curves at observation points
and sinks (wells, streams).

Code-testing Protocol
Demonstration

The code-testing and evaluation protocol
isappliedto a block-centered finite-difference
simulation code, FTWORK (Faust et al.,
1990), which was designed to simulate
transientand steady-state three-dimensional
saturated ground-water flow and transient
transport of a single dissolved component
under confined and unconfined conditions.
To demonstrate the use of the code-testing
protocol, the following steps have been
taken, featuring the FTWORK code: (1)
identifying and examining code functionality;
(2) determining type and objectives of tests
performed and documented by the code
developers; (3) evaluating the suitability of
performed tests for use in protocol
demonstration; (4) compiling protocol
summary structure (i.e., checklists) using
performed tests; (5) designing and
conducting new tests, based on deficiencies
in performed tests; and (6) summarizing the
combined results of tests performed by code
developers and tests performed as part of
the protocol demonstration.

Most of the tests originally performed by
the developers were adapted, augmented,
and reanalyzed to ensure consistency with
the protocol. Additional tests were designed
and executed to evaluate capabilities and
characteristics of the FTWORK code, not
addressed in the FTWORK documentation.

Discussion and Conclusions

Historically, reporting on simulation code-
testing has been limited to the use of author-
selected verification problems. Few studies
have focused on author-independent
evaluation of a code, or at code
intercomparison. Main deficiencies in

reported code-testing efforts include
incompleteness of the performed testing,
absence of discussion regarding tested
code functions as compared with available
code functions and features, and lack of
detail in test problem implementation. This
makes it difficult to recreate the data sets
for additional analysis. The protocol
presented in this report aims to address
theseissues. Inaddition, the protocol covers
many other test issues, ranging from
performance and resource utilization to
usefulness as a decision-making support
tool.

The code-testing protocol is designed to
be applicable to all types of simulation
codes dealing with fluid flow transport
phenomena in the unsaturated and
saturated zones of the subsurface.
Selection and imple-mentation of test
problems will differ for the different types of
codes. However, evaluation techniques
are in principle independent of code type.
Test results are presented in a form that is
unbiased by the requirements posed by
specific applications. It aims to provide
enough detail to establish confidence inthe
code’s capabilities and to efficiently
determine its applicability to specific field
problems. Because users of code-testing
results may differ in terms of objectives, the
protocol leaves it to the users to determine
if a tested code is suitable to their needs.

The most critical element of the code-
testing protocol is the functionality analysis
(including elements of what is often called
“code verification”). Many different test
configurations can be used and, for some
code types, a large number of benchmark
solutions may be available. For other code
types, intercomparison may be the only
available option. Selection of benchmarks
and design of test problems should be
guided by test objectives and in the context
ofthe completeness of the testing exercise.
Protocol tools such as functionality tables
and functionality matrices are effective aids
in the design of test problems. Well-
designed tests not only identify code
functionality problems, but should also
provide important information on correct
implementation of code features.
Functionality analysis may be limited
because not all code features can be
adequately addressed using benchmark
solutions. Often, code intracomparison,
code intercomparison and conceptual
testing are required, resulting in a more
subjective assessment of code accuracy
and operational constraints.

The functionality analysis, performance
evaluation and applicability assessment
protocol, presented in the full report,
provides a comprehensive framework for

systematic and in-depth evaluation of avariety
of ground-water simulation codes. While
allowing flexibility in implementation, it
secures, if properly applied, addressing all
potential coding problems. It should be noted
that the protocol does not replace scientific
review nor the use of sound programming
principles. Most effectively, the code-testing
under the protocol should be performed as
part of the code development process.
Additional testing in accordance with the
protocol may be performed under direction of
regulatory agencies, or by end-users. If
properly documented, code-testing in
accordance with the protocol supports
effectiveindependentreview and assessment
forapplication suitability. As such, the protocol
contributes significantly to improve quality
assurance in code development and use in
ground-water modeling.

References

Donigian, Jr., A.S. and Rao, P.S.C. 1986.
Example model testing studies. In: Vadose

Zone Modeling of Organic Pollutants (eds.
S.C. Hern and S.M. Melancon), Lewis
Publishers, Chelsea, Michigan.

Faust, C.R., P.N. Sims, C.P. Spalding,
P.F. Anderson, and D.E. Stephenson. 1990.
FTWORK: Athree-dimensional groundwater
flow and solute transport code. WRSC-RP-
89-1085. Westinghouse Savannah River
Company, Aiken, South Carolina.

van der Heijde, P.K.M., and O.A.
Elnawawy. 1992. Quality Assurance and
Quality Control in the Development and
Application of Ground-Water Models. EPA
600/R-93/011, Office of Research and
Development, U.S. Environmental
Protection Agency, Washington, D.C.

van der Heijde, P.K.M., S.S. Paschke,
and D.A. Kanzer. 1993. Ground-water flow
and solute transport model functionality
testing and performance evaluation. In: H.J.
Morel-Seytoux (ed.), Proc. Thirteenth AGU
Hydrology Days, Fort Collins, Colorado, pp.
378-389.

5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-487-4650

Ada, OK 74820

Paul K. van der Heijde and David A. Kanzer are with the International Ground Water
Modeling Center, Institute for Ground-Water Research and Education, Colorado
School of Mines, Golden, CO 80401-1887.

Joseph R. Williams is the EPA Project Officer (see below).

The complete report, entitled “Ground-Water Model Testing: Systematic Evaluation and
Testing of Code Functionality and Performance,” (Order No. xxx; Cost: $xx.00,
subject to change) will be available only from:

National Technical Information Service

The EPA Project Officer can be contacted at
Subsurface Protection and Remediation Division
National Risk Management Research Laboratory
U.S. Environmental Protection Agency

United States

Environmental Protection Agency

Center for Environmental Research Information
Cincinnati, OH 45268

Official Business
Penalty for Private Use $300

EPA/600/SR-97/007

BULK RATE
POSTAGE & FEES PAID
EPA
PERMIT No. G-35

